Part Number Hot Search : 
MA4ST080 1A101 NTE9094 CMZ5370B MZO52FAD MM1421 DZC33 CM7555
Product Description
Full Text Search
 

To Download MA747CN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Philips Semiconductors Linear Products
Product specification
Dual operational amplifier
A747C
DESCRIPTION
The 747 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of "latch-up" make the 747 ideal for use as a voltage-follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. The 747 is short-circuit protected and requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed-loop applications. For single amplifier performance, see A741 data sheet.
PIN CONFIGURATION
N Package
INV. INPUT A 1 NON-INVERTING INPUT A 2 OFFSET NULL A 3 - A + 14 OFFSET NULL A 13 V + A 12 OUTPUT A 11 NO CONNECT 10 OUTPUT B + -B 9 V+B 8 OFFSET NULL B
V- 4 OFFSET NULL B 5
NON-INVERTING INPUT B 6 INVERTING INPUT B 7
FEATURES
TOP VIEW
* No frequency compensation required * Short-circuit protection * Offset voltage null capability * Large common-mode and differential voltage ranges * Low power consumption * No latch-up
ORDERING INFORMATION
DESCRIPTION 14-Pin Plastic DIP TEMPERATURE RANGE 0C to 70C ORDER CODE A747CN DWG # 0405B
EQUIVALENT SCHEMATIC
INVERTING INPUT V+ Q8 Q9
Q12
Q13 Q14
NON-INVERTING INPUT Q1 Q2 30pF Q3 Q4 R5 39K Q16 Q7 Q5 OFFSET NULL Q6 Q10 Q11 Q22 R7 4.5 Q18 Q15 R8 7.5K
R9 25 OUTPUT Q17 R10 50
Q20 R1 1K R3 50K R2 1K R4 5k R12 R11 50k 50 V- OFFSET NULL
August 31, 1994
54
853-0899 13721
Philips Semiconductors Linear Products
Product specification
Dual operational amplifier
A747C
ABSOLUTE MAXIMUM RATINGS
SYMBOL VS PD MAX VIN VIN TSTG TA TSOLD ISC Supply voltage Maximum power dissipation TA=25C (still air)1 Differential input voltage Input voltage2 Voltage between offset null and VStorage temperature range Operating temperature range Lead temperature (soldering, 10sec) Output short-circuit duration PARAMETER RATING 18 1500 30 15 0.5 -65 to +150 0 to +70 300 Indefinite UNIT V mW V V V C C C
NOTES: 1. Derate above 25C at the following rates: N package at 12mW/C 2. For supply voltages less than 15V, the absolute maximum input voltage is equal to the supply voltage.
DC ELECTRICAL CHARACTERISTICS
TA=25C, VCC = 15V unless otherwise specified. SYMBOL VOS VOS/T IOS IOS/T IBIAS IB/T VOUT ICC Pd CIN ROUT PSRR AVOL CMRR Output voltage swing Supply current each side Over temperature Power consumption Over temperature Input capacitance Offset voltage adjustment range Output resistance Channel separation Supply voltage rejection ratio Large-signal voltage gain (DC) Common-mode rejection ratio RS10k, over temp. RL2k, VOUT=10V Over temperature RS10k, VCM=12V Over temperature 25,000 15,000 70 RL2k, over temp. RL10k, over temp. 10 12 Input current Over temperature Offset current Over temperature PARAMETER Offset voltage TEST CONDITIONS RS10k RS10k, over temp. A747C Min Typ 2.0 3.0 10 20 7.0 200 80 30 1 13 14 1.7 2.0 50 60 1.4 15 75 120 30 150 2.8 3.3 85 100 500 800 200 300 Max 6.0 7.5 UNIT mV mV V/C nA nA pA/C nA nA nA/C V V mA mA mW mW pF mV dB V/V V/V V/V dB
August 31, 1994
55
Philips Semiconductors Linear Products
Product specification
Dual operational amplifier
A747C
AC ELECTRICAL CHARACTERISTICS
TA=25C, VS = 15V unless otherwise specified. SYMBOL PARAMETER Transient response tR SR Rise time Overshoot Slew rate TEST CONDITIONS VIN=20mV, RL=2k, CL<100pF Unity gain CL100pF Unity gain CL100pF RL>2k 0.3 5.0 0.5 s % V/s A747C Min Typ Max UNIT
TYPICAL PERFORMANCE CHARACTERISTICS
Open-Looped Voltage Gain as a Function of Frequency
106 105 104 VOLTAGE GAIN 103 102 10 1 -1 1 10 100 1K 10K 100K 1M 10M FREQUENCY -- Hz -180 1 10 100 1K 10K 100K 1M 10M FREQUENCY -- Hz VS = + 15V TA = 25oC PHASE DEGREES
Open-Looped Voltage Response as a Function of Frequency
VS = + 15V TA = 25oC -45 PEAK-TO-PEAK OUTPUT SWING -- V 0 40 36 32 28 24 20 16 12 8 4 0
Output Voltage Swing as a Function of Frequency
VS = + 15V TA = 25oC RL = 10k
-90
-135
100
1k
10k
100k
1M
FREQUENCY -- Hz
Open-Loop Voltage Gain as a Function of Supply Voltage
PEAK TO PEAK OUTPUT SWING -- V 115 110 VOLTAGE GAIN -- dB 105 100 95 90 85 80 0 4 8 12 15 20 SUPPLY VOLTAGE -- +V TA = 25OC 40 36 32 28 24 20 16 12 8 4 0 5
Output Voltage Swing as a Function of Supply Voltage
COMMON MODE VOLTAGE RANGE --+ V -55oC < TA < +125oC RL > 2k
Input Common-Mode Voltage Range as a Function of Supply voltage
16 14 12 10 8 6 4 2 0 5 10 15 20 SUPPLY VOLTAGE -- +V -55oC < TA < +125oC
10
15
20
SUPPLY VOLTAGE -- +V
Transient Response
28 24 20 OUTPUT -- mV 16 12 8 4 10% 0 RISE TIME VS = + 15V TA = 25oC RL = 2k CL = 100pF OUTPUT VOLTAGE -- V
Voltage-follower Large-Signal Pulse Response
10 8 6 4 2 0 -2 -4 -6 -8 -10 0 10 20 30 40 50 60 70 80 90 TIME -- S OUTPUT INPUT VS = + 15V TA = 25oC RELATIVE VALUE
Frequency Characteristics as a Function of Supply Voltage
1.4 TA = 25oC 1.2 TRANSIENT RESPONSE 1.0
SLEW RATE CLOSED LOOP BANDWIDTH
0.8
0.6 5 10 15 20 SUPPLY VOLTAGE -- +V
0
0.5
1.0
1.5
2.0
2.5
TIME -- s
August 31, 1994
56
Philips Semiconductors Linear Products
Product specification
Dual operational amplifier
A747C
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Frequency Characteristics as a Function of Ambient Temperature
1.4 POWER CONSUMPTION -- mW VS = + 15V RELATIVE VALUE 1.2 TRANSIENT RESPONSE SLEW RATE 100 INPUT BIAS CURRENT -- nA
Power Consumption as a Function of Supply Voltage
500
Input Bias Current as a Function of Ambient Temperature
VS = +15V 400
80
TA A 2525oC T= = oC
60
300
1.0
40
200
0.8
CLOSED LOOP BANDWIDTH
20
100
0.6 -60
0 -20 20 80 100 140 5 10 15 20 TEMPERATURE -- oC SUPPLY VOLTAGE -- +V
0 -60
-20
20
60
100
140
TEMPERATURE -- oC
Input Resistance as a Function of Ambient Temperature
10.0 5.0 INPUT RESISTANCE -- M 3.0 VS = + 15V INPUT OFFSET CURRENT -- nA 40
Input Offset Current as a Function of Supply Voltage
TA = 25oC 30 INPUT OFFSET CURRENT -- nA
Input Offset Current as a Function of Ambient Temperature
140 120 100 80 60 40 20 0 -60 VS = + 15V
1.0 0.5 0.3
20
10
0.1 -60
0 -20 20 60 100 140 5 10 15 20
-20
20
60
100
140
TEMPERATURE -- oC
SUPPLY VOLTAGE -- +V
TEMPERATURE
--
oC
Power Consumption as a Function of Ambient Temperature
PEAK-TO-PEAK OUTPUT SWING -- V 28 26 24 22 20 18 16 14 12 10 POWER CONSUMPTION -- mW 70 VS = + 15V
Output Voltage Swing as a Function of Load Resistance
35 VS = +15V TA = 25oC SHORT CIRCUIT CURRENT -- mA
Output Short-Circuit Current as a Function of Ambient Temperature
30
60
25
50
20
40
30 -60 -20 20 60 100 140
15
8 0.1
0.2
0.5 1.0
2.0
5.0
10
10 -60
-20
TEMPERATURE
--
oC
LOAD RESISTANCE -- k
20 60 100 TEMPERATURE -- oC
140
August 31, 1994
57
Philips Semiconductors Linear Products
Product specification
Dual operational amplifier
A747C
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Input Noise Voltage as a Function of Frequency
MEANMEAN SQUARE VOLTAGE -- V 2 Hz SQUARE NOISE CURRENT 10 -13 MEAN SQUARE VOLTAGE -- V 2 Hz VS = + 15V TA = 25oC 10 -21 VS = + 15V TA = 25oC
Input Noise Current as a Function of Frequency
TOTAL NOISE REFERRED TO INPUT -- Vrms 100
Broadband Noise for Various Bandwidths
VS = + 15V TA = 25oC
10 -14
10 -22
10 -15
10 -23
10 10-100kHz 10-10kHz 1 10-1kHz
10 -16
10 -24
10 -17
10 -25
10 -18
10
100
1K
10K
100K
10 -26 10 100 1K 10K 100K FREQUENCY -- Hz
0.1 100
1K
10K
100K
FREQUENCY -- Hz
SOURCE RESISTANCE --
TEST CIRCUITS
- A747C + VIN CL RL VOUT
Transient Response Test Circuit
+ A747C -
10K
-V
Voltage Offset Null Circuit
August 31, 1994
58


▲Up To Search▲   

 
Price & Availability of MA747CN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X